实验室新闻
当前位置: 首页 -> 实验室新闻 -> 正文

王剑威/龚旗煌团队在硅基光量子芯片研究方面取得重要进展

发布日期:2019-12-24     点击量:

北京大学人工微结构和介观物理国家重点实验室“极端光学创新研究团队”王剑威研究员和龚旗煌院士与英国、丹麦、奥地利和澳大利亚的学者合作,实现了硅基集成光量子芯片上的多体量子纠缠和芯片-芯片间的量子隐形传态功能,为芯片上光量子信息处理和计算模拟的应用,奠定了坚实的基础。相关研究成果于近日发表在国际顶级物理期刊Nature Physics (https://www.nature.com/articles/s41567-019-0727-x)。

集成光量子芯片技术,结合了量子物理、量子信息和集成光子学等前沿学科,通过半导体微纳加工制造高性能且大规模集成的光量子器件,实现对光量子信息的高效处理、计算和传输等功能。其中,利用硅基平面光波导集成技术的光量子芯片具有诸多独特优势,包括集成度高、稳定性好、编程操控性优越和可单片集成核心光量子器件等,因此被认为是一种实现光量子信息应用的重要手段之一。

A. 硅基量子隐形传态和多光子量子纠缠芯片的示意图,左上角为集成量子光源的电子显微镜图;B. 量子隐形传态的量子线路图;C. 量子纠缠互换的量子线路图;D. GHZ纠缠制备的量子线路图

北京大学研究团队与布里斯托尔大学、丹麦科技大学、奥地利科学院、赫瑞-瓦特大学和西澳大利亚大学科研人员密切合作,在硅基光量子芯片技术和应用方面取得了突破性进展。研究团队发展了一种基于微环谐振腔的高性能集成量子光源,通过硅波导的强四波混频非线性效应,实现了光子全同性优于90%、无需滤波后处理的50%触发效率的单光子对源,达到了对4组微腔量子光源阵列的相干操控,片上双光子量子纠缠源的保真度达到了92%。团队实现了关键的可编程片上双比特量子纠缠门,可以按照功能需要切换贝尔投影测量和量子比特焊接操作,通过量子态层析实验确认了高保真的双比特纠缠操作。

研究团队在单一硅芯片上实现了高性能量子纠缠光源、可编程双比特量子纠缠门,以及可编程单量子比特测量的全功能集成,进而实现了三种核心量子功能模块——芯片上四光子真纠缠、量子纠缠互换、芯片-芯片间的高保真量子隐形传态。通过对两对纠缠光子对进行量子比特焊接操作,团队实现并判定了四比特Greenberger-Horne-Zeilinger (GHZ) 真量子纠缠的存在;通过对两对纠缠光子中各一个光子进行贝尔投影操作,实现了量子纠缠互换功能,使来自不同光子源的光子间产生了量子纠缠;利用两个芯片间的量子态传输和量子纠缠分布技术,实现了两个芯片间任意单量子比特的量子隐形传态,达到了近90%的隐形传态保真度。

团队研制的硅基多光子量子芯片尺寸仅占几平方毫米,比传统实现方法小了约5-6个数量级,不仅达到了器件的微型化,同时具备了单片全功能集成、器件编程可控、系统性能优越等特点,其中量子隐形传态保真度优于已报道的其它物理实现方法。多体量子纠缠体系的片上制备与量子调控技术,为片上量子物理基础研究和片上光量子信息处理传输、量子计算模拟的应用提供了重要基础。

前期工作中,北京大学团队还发展了硅基大规模集成的光量子芯片技术,实现了基于高维量子纠缠的复杂量子信息处理功能(Science 360, 285-291 (2018) );在芯片上实现了玻色取样专用型光量子计算和量子模拟功能(Nature Physics 15, 925-929 (2019) );并应邀撰写了集成光量子芯片技术综述(Nature Photonics, doi:10.1038/s41566-019-0532-1 (2019) )。

论文第一作者为英国布里斯托尔大学博士生Daniel Llewellyn,丹麦科技大学丁运鸿研究员、ImadFaruque博士;通讯作者为北京大学王剑威;合作者还包括北京大学李焱教授和肖云峰教授、中山大学周晓祺教授等。

这项工作得到北京大学人工微结构和介观物理国家重点实验室、国家自然科学基金、科技部重点研发计划、北京市自然科学基金、北京市量子信息科学研究院和广东省重点领域研发计划项目资助,以及纳光电前沿科学研究中心和量子物质科学协同创新中心等机构支持。


版权所有 © 人工微结构和介观物理国家重点实验室(北京大学)    地址:北京市海淀区成府路209号北京大学物理大楼    邮编:100871